Recent Publications

Adaptive conformal inference by betting (ICML, 2024) Aleksandr Podkopaev, Darren Xu, Kuang-Chih Lee
Conformal prediction is a valuable tool for quantifying predictive uncertainty of machine learning models. However, its applicability relies on the assumption of data exchangeability, a condition which is often not met in real-world scenarios. In this paper, we consider the problem of adaptive conformal inference without any assumptions about the data generating process. Existing approaches for adaptive conformal inference are based on optimizing the pinball loss using variants of online gradient descent. A notable shortcoming of such approaches is in their explicit dependence on and sensitivity to the choice of the learning rates. In this paper, we propose a different approach for adaptive conformal inference that leverages parameter-free online convex optimization techniques. We prove that our method controls long-term miscoverage frequency at a nominal level and demonstrate its convincing empirical performance without any need of performing cumbersome parameter tuning.
Sequential predictive two-sample and independence testing (NeurIPS, 2023) Aleksandr Podkopaev, Aaditya Ramdas
We study the problems of sequential nonparametric two-sample and independence testing. Sequential tests process data online and allow using observed data to decide whether to stop and reject the null hypothesis or to collect more data, while maintaining type I error control. We build upon the principle of (nonparametric) testing by betting, where a gambler places bets on future observations and their wealth measures evidence against the null hypothesis. While recently developed kernel-based betting strategies often work well on simple distributions, selecting a suitable kernel for high-dimensional or structured data, such as images, is often nontrivial. To address this drawback, we design prediction-based betting strategies that rely on the following fact: if a sequentially updated predictor starts to consistently determine (a) which distribution an instance is drawn from, or (b) whether an instance is drawn from the joint distribution or the product of the marginal distributions (the latter produced by external randomization), it provides evidence against the two-sample or independence nulls respectively. We empirically demonstrate the superiority of our tests over kernel-based approaches under structured settings. Our tests can be applied beyond the case of independent and identically distributed data, remaining valid and powerful even when the data distribution drifts over time.
Sequential kernelized independence testing (ICML, 2023) Aleksandr Podkopaev, Patrick Bloebaum, Shiva Prasad Kasiviswanathan, Aaditya Ramdas
Independence testing is a classical statistical problem that has been extensively studied in the batch setting when one fixes the sample size before collecting data. However, practitioners often prefer procedures that adapt to the complexity of a problem at hand instead of setting sample size in advance. Ideally, such procedures should (a) stop earlier on easy tasks (and later on harder tasks), hence making better use of available resources, and (b) continuously monitor the data and efficiently incorporate statistical evidence after collecting new data, while controlling the false alarm rate. Classical batch tests are not tailored for streaming data: valid inference after data peeking requires correcting for multiple testing which results in low power. Following the principle of testing by betting, we design sequential kernelized independence tests that overcome such shortcomings. We exemplify our broad framework using bets inspired by kernelized dependence measures, e.g., the Hilbert-Schmidt independence criterion. Our test is also valid under non-i.i.d., time-varying settings. We demonstrate the power of our approaches on both simulated and real data.