Recent Publications

Dependence-aware label aggregation for LLM-as-a-judge via Ising models (preprint, 2026) Krishnakumar Balasubramanian, Aleksandr Podkopaev, Shiva Prasad Kasiviswanathan
Large-scale AI evaluation increasingly relies on aggregating binary judgments from K annotators, including LLMs used as judges. Most classical methods, e.g., Dawid-Skene or (weighted) majority voting, assume annotators are conditionally independent given the true label Y∈{0,1}, an assumption often violated by LLM judges due to shared data, architectures, prompts, and failure modes. Ignoring such dependencies can yield miscalibrated posteriors and even confidently incorrect predictions. We study label aggregation through a hierarchy of dependence-aware models based on Ising graphical models and latent factors. For class-dependent Ising models, the Bayes log-odds is generally quadratic in votes; for class-independent couplings, it reduces to a linear weighted vote with correlation-adjusted parameters. We present finite-K examples showing that methods based on conditional independence can flip the Bayes label despite matching per-annotator marginals. We prove separation results demonstrating that these methods remain strictly suboptimal as the number of judges grows, incurring nonvanishing excess risk under latent factors. Finally, we evaluate the proposed method on three real-world datasets, demonstrating improved performance over the classical baselines.
Optimal transportation and alignment between Gaussian measures (preprint, 2025) Sanjit Dandapanthula, Aleksandr Podkopaev, Shiva Prasad Kasiviswanathan, Aaditya Ramdas, Ziv Goldfeld
Optimal transport (OT) and Gromov-Wasserstein (GW) alignment provide interpretable geometric frameworks for comparing, transforming, and aggregating heterogeneous datasets -- tasks ubiquitous in data science and machine learning. Because these frameworks are computationally expensive, large-scale applications often rely on closed-form solutions for Gaussian distributions under quadratic cost. This work provides a comprehensive treatment of Gaussian, quadratic cost OT and inner product GW (IGW) alignment, closing several gaps in the literature to broaden applicability. First, we treat the open problem of IGW alignment between uncentered Gaussians on separable Hilbert spaces by giving a closed-form expression up to a quadratic optimization over unitary operators, for which we derive tight analytic upper and lower bounds. If at least one Gaussian measure is centered, the solution reduces to a fully closed-form expression, which we further extend to an analytic solution for the IGW barycenter between centered Gaussians. We also present a reduction of Gaussian multimarginal OT with pairwise quadratic costs to a tractable optimization problem and provide an efficient algorithm to solve it using a rank-deficiency constraint. To demonstrate utility, we apply our results to knowledge distillation and heterogeneous clustering on synthetic and real-world datasets.
Adaptive conformal inference by betting (ICML, 2024) Aleksandr Podkopaev, Darren Xu, Kuang-Chih Lee
Conformal prediction is a valuable tool for quantifying predictive uncertainty of machine learning models. However, its applicability relies on the assumption of data exchangeability, a condition which is often not met in real-world scenarios. In this paper, we consider the problem of adaptive conformal inference without any assumptions about the data generating process. Existing approaches for adaptive conformal inference are based on optimizing the pinball loss using variants of online gradient descent. A notable shortcoming of such approaches is in their explicit dependence on and sensitivity to the choice of the learning rates. In this paper, we propose a different approach for adaptive conformal inference that leverages parameter-free online convex optimization techniques. We prove that our method controls long-term miscoverage frequency at a nominal level and demonstrate its convincing empirical performance without any need of performing cumbersome parameter tuning.