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Setup

Deployed machine learning models inevitably
encounter changes in distribution. It often
may make sense to ignore benign shifts, under
which the performance of a model does not de-
grade substantially, making interventions, such
as model retraining, unnecessary. We differen-
tiate between malignant and benign shifts by
measuring changes in a user-specified metric,
like accuracy or calibration.

We design nonparametric sequential hypoth-
esis tests that (a) provably control the false
alarm rate despite the multiple testing issues
caused by continuous monitoring and (b) do
not constrain the form of allowed shifts.

Detection as a sequential
testing problem

Let X and Y denote the covariate and label
spaces respectively. Let ℓp¨, ¨q be the loss func-
tion chosen to be monitored, with Rpfq :“
E rℓpfpXq, Y qs denoting the risk of a predictor
f : X Ñ Y . We also consider running risk:

Rptq
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, t ě 1,

where the expected value is taken with respect
to the joint distribution of pX 1

i, Y
1
i q, possibly dif-

ferent for each test point i. We aim to test:

H0 : R
ptq
T pfq ď RSpfq ` εtol, @t ě 1,

H1 : Dt‹ ě 1 : R
pt‹q

T pfq ą RSpfq ` εtol,

where εtol is a tolerance level, RSpfq and
R

ptq
T pfq denote the source and target risks.

Suppose that one observes a sequence of
data points Z1, Z2, . . . . At each time point t,
a sequential test takes the first t elements of
this sequence and output either a 0 (continue)
or 1 (reject the null and stop). Formally, a
level-δ sequential test Φ defined as a mapping
Ť8

n“1Zn Ñ t0, 1u must satisfy: PH0
pDt ě 1 :

ΦpZ1, ..., Ztq “ 1q ď δ, that is, if the null H0 is
true, then the probability that the test ever out-
puts a 1 and stops (false alarm) is at most δ.

Traditional (fixed-time) testing procedures are
not valid under sequential settings and require
corrections for multiple testing. Instead, we uti-
lize confidence sequences which allow for con-
tinuous monitoring of model performance.
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However, naive corrections for multiple testing
do not take advantage of the dependence be-
tween the tests, and thus lead to losses of
power of the resulting procedure.

Framework overview

Risk on the source is usually assessed
through a labeled holdout sample of a fixed
size: tpXi, Yiqu

nS
i“1. Classic concentration re-

sults give an upper bound pUSpfq on the risk:

P
´

RSpfq ď pUSpfq

¯

ě 1 ´ δS.

Target risk has to be re-estimated as losses
on test instances are observed. Time-uniform
confidence sequences retain validity under
adaptive settings and give a time-uniform
lower bounds pL

ptq
T pfq, t “ 1, 2, . . . on the risk:

P
´

Dt ě 1 : R
ptq
T pfq ă pL

ptq
T pfq

¯

ď δT .

Procedure: Compute the upper confidence
bound on the source risk pUSpfq at level δS.
For each time point t “ 1, 2, . . .

1. Compute the lower confidence bound on
the target risk pL

ptq
T pfq at level δT .

2. Compute:

ΦpZ1, ..., Ztq “ 1

!

pL
ptq
T pfq ą pUSpfq ` εtol

)

3. If ΦpZ1, ..., Ztq “ 1, reject H0 and fire off
a warning.

Proposition 1. The proposed procedure con-
trols the type I error uniformly over time:

PH0
pDt ě 1 : ΦpZ1, ..., Ztq “ 1q ď δS ` δT .

Consider a binary classification problem
where data are sampled from a Gaussian mix-
ture: X | Y “ y „ N pµy, I2q, and by design,
the classes overlap. For a fixed marginal prob-
ability of class 1 on the source (πS1 “ 0.25),
we use the corresponding Bayes-optimal pre-
dictor. We induce label shift on the target do-
main, which malignancy is fully determined by
the value of πT1 .

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

Class 0

Class 1

Variance-adaptive bounds are much tighter
when the individual losses ℓpfpXiq, Yiq have
low variance. As a result, harmful shifts are
detected much earlier, while the false alarm
rate is still controlled at any prespecified level.
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Simulations

Figure 1: Examples of corrupted CIFAR-10 images.

Using a shallow CNN trained on clean MNIST
data, we test whether the misclassification risk
increases by 10% when clean and corrupted
images are passed to the network. Not all cor-
ruptions are found to represent harmful shifts.
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Figure 2: Examples of corrupted CIFAR-10 images.

We build a wrapper around a ResNet-32
model which outputs a set of candidate la-
bels as a prediction. Under the i.i.d. assump-
tion, it is guaranteed to have low miscoverage
risk (0.1) with high probability (at least 95%).
We test whether coverage drops by 5% when
clean and corrupted images are passed to the
model. Only the most intense level of fog is
found to be consistently harmful to coverage.
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