

tl;dr consistent sequential nonparametric independence testing.

Preliminaries

Independence Testing (IT). Given iid draws (*X*₁ ... from P_{XY} , construct a test for:

 $H_0: P_{XY} = P_X \times P_Y \qquad H_1: P_{XY} \neq P_X \times P_Y$

1. *X* and *Y* need not take values in the same space. 2. No parametric assumptions on distributions.

Issue. Even if H_0 is false, it is unknown a priori how much data are needed to reject H_0 .

Sequential Test Φ : at time *t*, outputs 0 (collect more data) or 1 (reject H_0 and stop) based on first *t* points.

Stopping time $\tau := \inf\{t \ge 1 : \Phi((X_1, Y_1), ..., (X_t, Y_t)) = 1\}.$

$\mathbb{P}_{H_0}(\tau < \infty) \le \alpha$	$\mathbb{P}_{H_1}(\tau < \infty)$
``time-uniform''	``power-or
type-1 error control	[Darling and Red

Batch type-1 error control: *prespecified* sample size *t*.

Kernel Measures of Dependence. Let \mathscr{G} (and \mathscr{H}) be an RKHS with positive-definite kernel *k* (and *l*) and canonical feature map φ (and ψ) defined on \mathcal{X} (and \mathcal{Y}).

$$HSIC(P_{XY}; \mathcal{G}, \mathcal{H}) = \| \mu_{XY} - \mu_X \otimes \mu_Y \|$$
$$\mu_{XY} = \mathbb{E}_{P_{XY}}[\varphi(X) \otimes \psi(Y)] \quad \mu_X = \mathbb{E}_{P_X}[\varphi(X)] \quad \mu_Y \|$$
$$\| \mu_{XY} - \mu_X \otimes \mu_Y \| = \sup_{g: \|g\| \le 1} \langle g, \mu_{XY} - \mu_Y \otimes \mu_Y \|$$
$$g_\star = \frac{\mu_{XY} - \mu_X \otimes \mu_Y}{\|\mu_{XY} - \mu_X \otimes \mu_Y \|} \quad \text{witness fu}$$
(notices maximum

• For 1-d and linear kernel, $\text{HSIC}(P_{XY}; \mathcal{G}, \mathcal{H}) = (\text{Cov}(X, Y))^2$.

• For common kernels, characteristic condition holds:

 $HSIC(P_{XY}; \mathcal{G}, \mathcal{H}) = 0$ iff H_0 is true (> 0 otherwise)

Sequential Kernelized **Independence Testing**

(to appear at ICML 2023)

$$(Y_1, Y_1), (X_2, Y_2),$$

 $\infty) = 1$

one tests" Robbins, 1968]

 $\Lambda_{Y} \parallel^{2}$

 $\iota_Y = \mathbb{E}_{P_V}[\psi(Y)]$

 $u_X \otimes \mu_Y \rangle$

inction n discrepancy)

Sequential nonparametric IT by betting

Protocol. (Bet on two observations from P_{XY}) Gambler starts with $\mathscr{K}_0 = 1$. At each round *t*:

1. Gambler selects: (a) a **fair** payoff function f_t :

 $\mathbb{E}_{H_0} \left[f_t((X, Y), (X', Y')) \mid \mathcal{F}_{t-1} \right]$ (b) a fraction of wealth: $\lambda_t \in I$

2. Nature reveals two points fro

Idea. Use wealth to measure evidence against H_0 .

$$\tau := \inf\{t \ge$$

 H_0 is true: $(\mathscr{K}_t)_{t>0}$ is a nonnegative martingale for any $(f_t)_{t>1}$ and $(\lambda_t)_{t>1}$ that satisfy the above constraints.

By Ville's inequality

Payoff Functions. (replace terms in HSIC with estimators)

plug-in witness function computed A { (X_i, Y_i) }_{i<2t}

 $f_t((X, Y), (X', Y')) = \langle \hat{g}_t, \frac{1}{2} (\varphi) \rangle$

(computation requires linear in *t* kernel evaluations)

Betting Fractions. Follow the best λ_{\star} in hindsight via Online Newton step [Hazan et al., 2007].

Aleksandr Podkopaev¹, Patrick Blöbaum², Shiva Kasiviswanathan², Aaditya Ramdas^{1,2} ¹Carnegie Mellon University, ²AWS

$$(\mathscr{X} \times \mathscr{Y})^2 \rightarrow [-1,\infty)$$
:
= 0, $\mathscr{F}_{t-1} = \sigma(\{(X_i, Y_i)\}_{i \le 2t})$
[-1,1], to bet.
om P_{XY} , and wealth is updated:

 $\mathscr{K}_{t} = \mathscr{K}_{t-1} \cdot \left(1 + \lambda_{t} \cdot f_{t}((X_{2t+1}, Y_{2t+1}), (X_{2t+2}, Y_{2t+2})) \right)$

 $: \mathscr{K}_{t} \geq 1/\alpha$

$\mathbb{P}_{H_0}(\tau < \infty) \le \alpha$

Goal. Pick $(f_t)_{t \ge 1}$, $(\lambda_t)_{t > 1}$ to guarantee wealth growth under H_1 .

$$X') - \varphi(X) \bigg) \bigotimes \big(\psi(Y') - \psi(Y) \big) \bigg\}$$

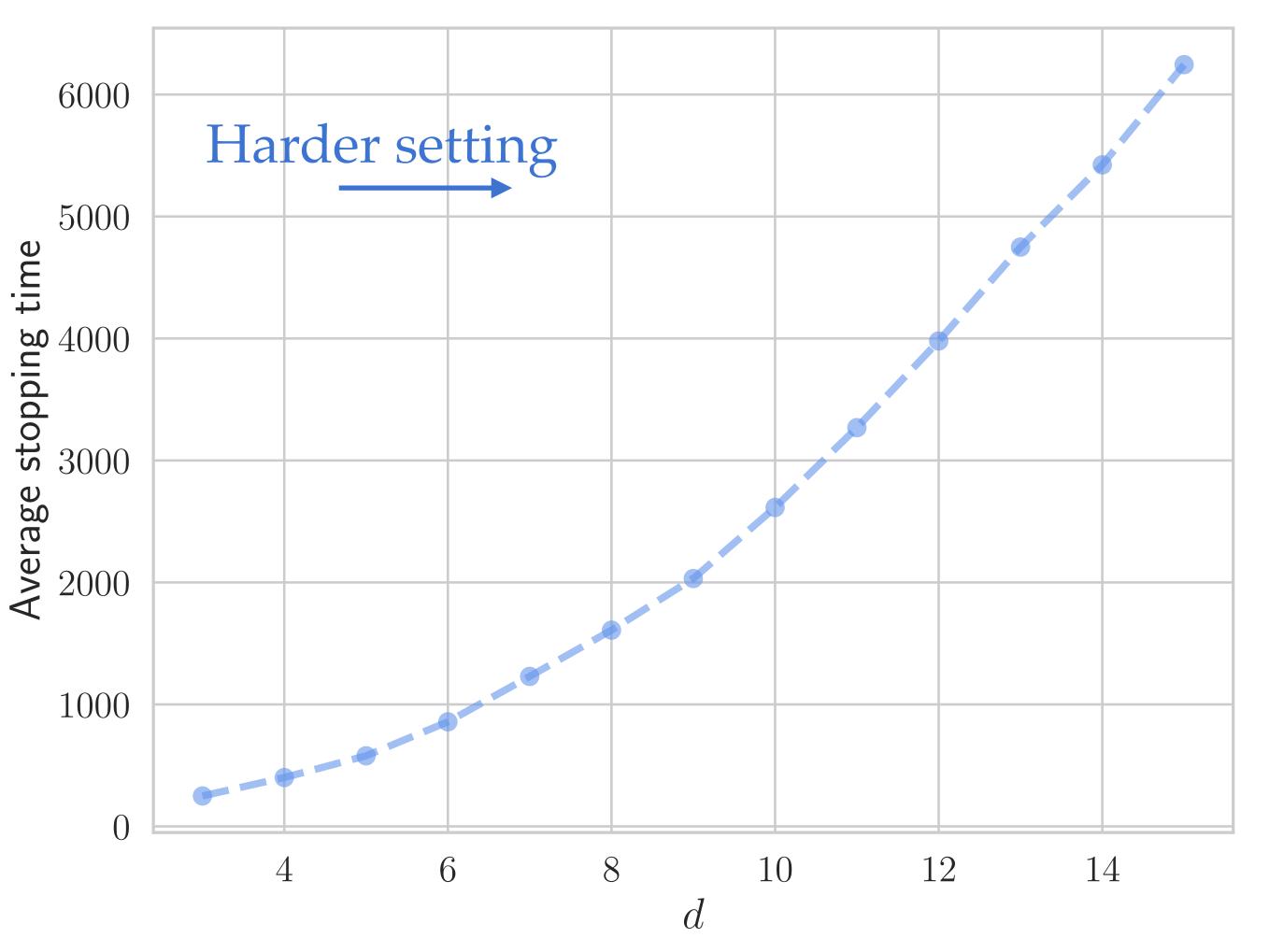
unbiased estimator of $\mu_{XY} - \mu_X \otimes \mu_Y$ computed from (X, Y), (X', Y')

Power and adaptivity to the complexity

 H_1 is true: $\mathscr{K}_t \xrightarrow{\text{a.s.}} + \infty$, which implies consistency: $\mathbb{P}_{H_1}(\tau < \infty) = 1$ Wealth (proxy for power) grows exponentially: $\liminf_{t \to \infty} \frac{1}{t} \log \mathscr{K}_t \stackrel{\text{a.s.}}{\geq} \frac{M_1}{4} \cdot \left(\frac{M_1}{M_2} \wedge 1\right)$

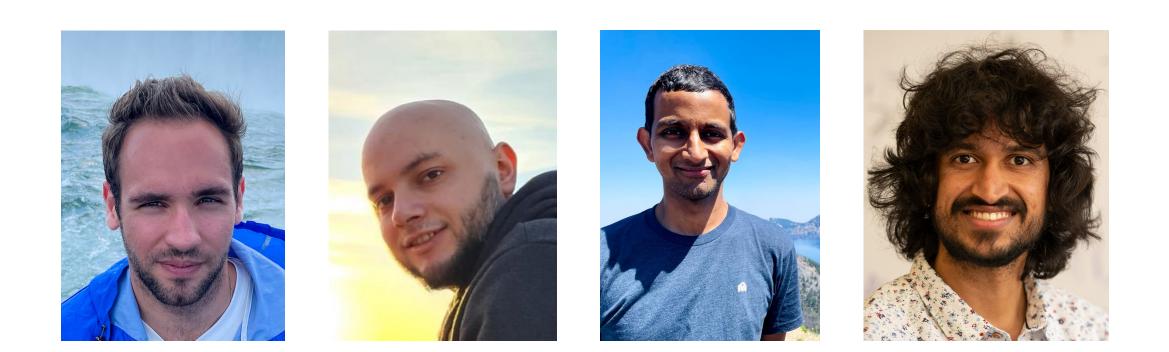
$$\begin{split} M_1 &= \mathbb{E} f_{\star}((X, Y), (X', Y')) = \sqrt{\mathrm{HSIC}(P_{XY}; \mathcal{G}, \mathcal{H})} \\ M_2 &= \mathbb{E} f_{\star}^2((X, Y), (X', Y')) \leq 1 \end{split}$$

$(X_t, Y_t) = (U_t^{(1)}, U_t^{(2)}), U_t \sim \text{Unif}(\mathbb{S}^d)$



Also in the paper

- IT beyond the iid case & testing instantaneous independence
- Alternative kernel measures of dependence (COCO, KCC)
- Extensions to unbounded kernels (via reduction to testing symmetry)



 $\liminf_{t \to \infty} \frac{1}{t} \log \mathscr{K}_t \stackrel{\text{a.s.}}{\geq} \frac{1}{4} \text{HSIC}(P_{XY}; \mathscr{G}, \mathscr{H})$

