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Also in the paper

Sequential nonparametric IT by betting

Independence Testing (IT). Given iid draws 
 from , construct a test for:

(X1, Y1), (X2, Y2),
… PXY

Power and adaptivity to the complexity
Preliminaries

Sequential Test : at time , outputs 0 (collect more data) or 1 
(reject  and stop) based on first  points.
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Kernel Measures of Dependence. Let  (and ) be an 
RKHS with positive-definite kernel  (and ) and canonical 
feature map  (and ) defined on  (and ).
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Protocol. (Bet on two observations from )PXY

Payoff Functions. (replace terms in HSIC with estimators)

(computation requires linear in  kernel evaluations)t

H1 : PXY ≠ PX × PYH0 : PXY = PX × PY

ℙH0
(τ < ∞) ≤ α

Batch type-1 error control: prespecified sample size .t

      HSIC(PXY; 𝒢, ℋ) = ∥ μXY − μX ⊗ μY ∥2

μX = 𝔼PX
[φ(X)]μXY = 𝔼PXY

[φ(X) ⊗ ψ(Y)] μY = 𝔼PY
[ψ(Y)]

1.  and  need not take values in the same space.
2. No parametric assumptions on distributions.

X Y

tl;dr consistent sequential nonparametric independence testing.

 (( , ), ( , ))  , ft X Y X′ Y′ = ⟨ ̂gt
1
2 (φ(X′ ) − φ(X)) ⊗ (ψ(Y′ ) − ψ(Y))⟩

plug-in witness function 
computed A {(Xi, Yi)}i≤2t

unbiased estimator of  
computed from 

μXY − μX ⊗ μY
(X, Y), (X′ , Y′ )

Issue. Even if  is false, it is unknown a priori how much data 
are needed to reject .

H0
H0

(a) a fair payoff function  :ft : (𝒳 × 𝒴)2 → [−1,∞)

 (( , ), ( , )) ,      𝔼H0
[ ft X Y X′ Y′ ∣ ℱt−1] = 0 ℱt−1 = σ({(Xi, Yi)}i≤2t)

1. Gambler selects:

Gambler starts with . At each round :𝒦0 = 1 t

2. Nature reveals two points from , and wealth is updated: PXY

 , , ,  𝒦t = 𝒦t−1 ⋅ (1+ λt ⋅ ft((X2t+1 Y2t+1) (X2t+2 Y2t+2)))

(b) a fraction of wealth: , to bet.λt ∈ [−1,1]
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, (Xt, Yt) = (U(1)
t , U(2)

t ) Ut ∼ Unif(𝕊d)

Harder setting

• IT beyond the iid case & testing 
instantaneous independence

• Alternative kernel measures of dependence 
(COCO, KCC)

• Extensions to unbounded kernels (via 
reduction to testing symmetry)

∥μXY − μX ⊗ μY∥ = sup
g:∥g∥≤1

⟨g, μXY − μX ⊗ μY⟩

g⋆ =
μXY − μX ⊗ μY

∥μXY − μX ⊗ μY∥
witness function

(notices maximum discrepancy)

• For 1-d and linear kernel, .
• For common kernels, characteristic condition holds:

HSIC(PXY; 𝒢, ℋ) = (Cov(X, Y))2

M1 = 𝔼 f⋆((X, Y), (X′ , Y′ )) = HSIC(PXY; 𝒢, ℋ)

 is true: , which implies consistency:

Wealth (proxy for power) grows exponentially:

H1 𝒦t
a.s.→ + ∞

ℙH1
(τ < ∞) = 1

lim inf
t→∞

1
t log 𝒦t

a.s.
≥ M1

4 ⋅ ( M1

M2
∧ 1)

lim inf
t→∞

1
t log 𝒦t

a.s.
≥ 1

4 HSIC(PXY; 𝒢, ℋ)

Stopping time .τ := inf{t ≥ 1 : Φ((X1, Y1), …, (Xt, Yt)) = 1}

ℙH1
(τ < ∞) = 1

``power-one tests’’ 
[Darling and Robbins, 1968]

``time-uniform’’ 
type-1 error control 

Goal. Pick ,  to guarantee wealth growth under .( ft)t≥1 (λt)t≥1 H1

M2 = 𝔼 f2
⋆((X, Y), (X′ , Y′ )) ≤ 1

τ := inf{t ≥ 1 : 𝒦t ≥ 1/α}

Idea. Use wealth to measure evidence against .H0

 is true:  is a nonnegative martingale for any 
 and  that satisfy the above constraints.

H0 (𝒦t)t≥0
( ft)t≥1 (λt)t≥1

By Ville’s inequality

 iff  is true (  otherwise)HSIC(PXY; 𝒢, ℋ) = 0 H0 > 0

ℙH0
(τ < ∞) ≤ α

Corollary.

Betting Fractions. Follow the best  in hindsight via Online 
Newton step [Hazan et al., 2007].
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