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Notions of uncertainty quantification
for classification

Setup. Let X and Y “ t0, 1u denote the feature and label
spaces for binary classification. Given predictor f : X Ñ Z
(e.g. Z “ r0, 1s for logistic regression, Z “ R for SVM)
trained on some labeled data and an independent sample
tpXi, YiquiPrns „ Pn, we consider a question of provid-
ing a measure of uncertainty for the produced prediction in
distribution-free setting, i.e. without making assumptions on
P .

Confidence Intervals (CI) and Prediction Sets (PS). Let
I denote the set of all subintervals of r0, 1s and denote
L ” tt0u, t1u, t0, 1u,Hu.
• A function C : Z Ñ I is a p1´ αq-CI with respect to
f : X Ñ Z if

PpE rY | fpXqs P CpfpXqqq ě 1´ α.

• A function S : Z Ñ L is a p1 ´ αq-PS with respect to f :
X Ñ Z if

PpY P SpfpXqqq ě 1´ α.

Perfect Calibration. A predictor f : X Ñ r0, 1s is (perfectly)
calibrated if

E rY | fpXq “ as “ a a.s. for all a in the range of f .

Approximate Calibration. A predictor f : X Ñ r0, 1s is
pε, αq-approximately calibrated for some α P p0, 1q and a func-
tion ε : r0, 1s Ñ r0, 1s if with probability at least 1´α, we have

|E rY |fpXqs ´ fpXq| ď εpfpXqq.

Asymptotic Calibration. A sequence of predictors tfnunPN
from X Ñ r0, 1s is asymptotically calibrated at level α P

p0, 1q if there exists a sequence of functions tεnunPN such
that fn is pεn, αq-approximately calibrated for every n, and
εnpfnpXn`1qq “ oP p1q.

Relationship between notions
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Theorem 1. Let f : X Ñ r0, 1s be a predictor that is pε, αq-approximately calibrated for some
function ε. Then the function C:

Cpfpxqq “ rfpxq ´ εpfpxqq, fpxq ` εpfpxqqs, (1)

is a p1´ αq-CI with respect to f .

Corollary 1. If a sequence of predictors tfnunPN is asymptotically calibrated at level α, then (1)
yields a sequence tCnunPN such that each Cn is a p1 ´ αq-CI with respect to fn and
|CnpfnpXn`1qq| “ oP p1q.

Theorem 2. Fix f : X Ñ Z . If pCn is a p1 ´ αq-CI with respect to f for all distributions P , then
discp pCnq “ pCn X t0, 1u Ď L is a p1 ´ αq-PS with respect to f for all distributions P for which
PfpXq is nonatomic.

Corollary 2. Fix f : X Ñ Z . If pCn is a p1 ´ αq-CI with respect to f for all P , and there
exists a P such that PfpXq is nonatomic, then we can construct a distribution Q such that

EQn`1| pCnpfpXn`1qq| ě 0.5´ α.

Necessary condition for asymptotic calibration in
distribution-free setting

Partition view-point. Actual values taken by f are only as informative as the partition of X
provided by its level sets. Denote this partition as tXzuzPZ , where Xz “ tx P X : fpxq “ zu.

Theorem 3 (informal). If a sequence tfnunPN is asymptotically calibrated at level α for all P , then
the cardinality of the partition induced by fn must be at most countable for large enough n.

Implications. Popular continuous scoring functions such as logistic regression, deep neural-
nets with softmax output and SVMs cannot be asymptotically calibrated without distributional
assumptions.
This impossibility result can be extended to many parametric calibration schemes that ‘re-
calibrate’ an existing f through a wrapper hn : Z Ñ r0, 1s learnt on the calibration data
(Platt/temperature scaling, beta calibration).

Achieving approximate calibration in
distribution-free setting via binning

Notation. Sample-space X is partitioned into B regions
tXbubPrBs with πb “ E rY | X P Xbs being the expected la-
bel probability in Xb. Denote the partition-identity function as
B : X Ñ rBs where Bpxq “ b if and only if x P Xb. Let
psb :“ |ti P rns : BpXiq “ bu| be the number of points from the
calibration set that belong to region Xb. Define

pπb :“
1

psb

ÿ

i:BpXiq“b
Yi and pVb :“

1

psb

ÿ

i:BpXiq“b
pYi ´ pπbq

2

as the empirical average and variance of the Y values in a
partition.

Theorem 4. For any α P p0, 1q, with probability at least 1´ α,

|πb ´ pπb| ď

d

2pVb lnp3B{αq

psb
`

3 lnp3B{αq

psb
,

simultaneously for all b P rBs.

Let b‹ “ arg minbPrBs psb denote the index of the region with the
minimum number of calibration examples.

Corollary 3. For α P p0, 1q, fnpxq :“ pπBpxq is pε, αq-
approximately calibrated with

εp¨q “

d

pVb‹ lnp3B{αq

2psb‹
`

3 lnp3B{αq

2psb‹
. (2)

Thus, tfnunPN is asymptotically calibrated at level α.

Results are also generalized to online setting when extra cali-
bration data can be queried until a desired confidence level and
covariate shift setting when the test data distribution changes,
but unlabeled data from a ‘target’ domain is available.

Data-dependent sample-space partition. Guarantee 2 can
be unsatisfactory if the sample-space partition is constructed
poorly. Uniform-mass binning is a partitioning scheme based
on the sample splitting idea that provably guarantees that psb‹
scales as Ωpn{Bq with high probability.


