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Distribution-free (DF) Let w(y) = q(y)/p(y) (importance weights). Then: Choose a set of significance levels for each class Bayes rule suggests an appropriate correction for achieving
unce_r?aln.ty FO) (2,0 7) = {y : py(m 7) + u-#y(x) < T5Y)}, {ay},cy (6.9, 0y = ). Split the calibration set 7, into approximate calibration on the target:
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Calibration A predictor f : & — A Is calibrated if are provably valid (the proof relies on the concept of | | | Theorem 1. For any bin m € M, it holds that:
P(Y =yl f(X)=f(X), yeY=1_l,...,K}. weighted exchangeability).  LCC yields a stronger guarantee which makes it auto- A . 2| — w
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Let P, Q stand for the source (generating training data) and target Exchangeability arguments yield a guarantee for known price to pay is given by larger prediction sets. (a) —
(generating test data) distributions defined on X x V. impOrtance Weigh’[S, N praC’[ice Only an estimator is avail- « LCC does not reqUire impOrtanCG WelghtS estimation _ led by th ibrat |r<-|) 9
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where k = |Degg| is the size of sets used for constructing predictor on the target while uncorrected fails.

The form of the oracle prediction sets when m,(x) = : : : LO | e Perfectly calibrated ,
P[Y =y | X = z] is known suggests to conformalize the following Simul o o Label shift hurts calibration i
sequence of nested sets (u ~ Unif([0, 17)): - Simulated data Class proportlons. p = (0.1,0.6,0.3) ol 7
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For any triple (X, Y, U), its non-conformity score: Real data line quality dataset with p = plotted using the background coloring. S, N |
| ) . (0.1,0.4,0.5), ¢ = (0.4,0.5,0.1). = AN /
r(X,Y,U) =inf{r e T o py(X;7) + U - Ty (X) < 7} *The area S = {:z; e R* i (x) e [0.4; 0.6]} has bound- £ N |
= py(X;7) + U -y (X). P oo Nominal 90% level 11 | ary given by the black dashed lines. 0 f ;: ﬁ:j
Choose 7 = Q1o ({7i}icz, v {1}). Then: | esimared wegs B N NN
P (Vo1 € Fr (Xni1, Ui ) | X3, Yilier, ) = 1 s = o o ol ANA N/NZ
nil € J o+ n+l, Upat1: T is Xi)sieT, > 1 — (. = L] 0.0 0.2 0.4 0.6 08 1.0
o +s Unit; 1) | o 3 60 Mean predicted probability
O |
40 a Fig. 5: Example of a reliability curve on the simulated dataset.
Calibration for i.i.d. data . ==
0 N ! LO eeeeeeens Perfectly calibrated
0.800 0.825 0.850 0.875 0.900 0.925 0.950 = Uncorrected
Binning is necessary for obtaining DF guarantees: Ax = UY_, B, Coverage 72 Oracle
Bin Bj = &, i # j. In the binary setting uniform-mass, or equal fre- - - o | M Estimated ..
iNDj=O,1#). € y gu ; qu Fig. 2: Coverage on the simulated dataset. .“2’
guency, binning guarantees a sufficient number of calibration data =
points in each bin. To achieve approximate calibration, use empiri- 2001 ___2 Nominal 90% level i ' Q s
cal frequencies of class labels in each bin: 100 | EEEA Oracle weights ) ‘ o
B Estimated weights -
A~ 1 X g0 | E=3 Uncorrected . _8 y
Tym = N— Z 1{Y; = Y, f(Xz) e B} 7 = O A
m ;=1 o 60 I /
Ny = i € Tor : F(X:) € By . o P 7R
Let h : X — Ak denote the ‘recalibrated’ predictor: h(z) = 7y, N i |
where g : X — M is the bin-mapping function: g(z) = m = f(x) € g — oo L e L ~ .
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Fig. 6: Example of a reliability curve on the wine quality dataset.

Fig. 3: Coverage on the wine quality dataset.
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Consequently, it implies approximate calibration of the resulting pre-
dictor.



