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Calibrating
probabilistic output

Conformal classification Construct C : X Ñ 2Y:

P pYn`1 P CpXn`1qq ě 1 ´ α.

Calibration A predictor f : X Ñ ∆K is calibrated if

P pY “ y | f pXqq “ fypXq, y P Y “ t1, . . . , Ku .

Let P,Q stand for the source (generating training data) and target
(generating test data) distributions defined on X ˆ Y .
Label shift assumption qpx | yq “ ppx | yq, qpyq ‰ ppyq.

Exchangeable (split-)conformal

The form of the oracle prediction sets when πypxq “

P rY “ y | X “ xs is known suggests to conformalize the following
sequence of nested sets (u „ Unifpr0, 1sq):

Fτpx, u; pπq “
 

y : ρypx; pπq ` u ¨ pπypxq ď τ
(

, τ P r0, 1s,

ρypx; pπq “
ÿ

y1

pπy1pxq1
 

pπy1pxq ą pπypxq
(

.

For any triple pX, Y, U q, its non-conformity score:

rpX, Y, U q “ inf tτ P T : ρY pX ; pπq ` U ¨ pπY pXq ď τ u

“ ρY pX ; pπq ` U ¨ pπY pXq.

Choose τ ‹ “ Q1´α

´

triuiPIcal Y t1u
¯

. Then:

P
´

Yn`1 P Fτ ‹ pXn`1, Un`1; pπq | tpXi, YiquiPItr
¯

ě 1 ´ α.

Calibration for i.i.d. data

Binning is necessary for obtaining DF guarantees: ∆K “
ŤM
m“1Bm,

Bi XBj “ H, i ‰ j. In the binary setting uniform-mass, or equal fre-
quency, binning guarantees a sufficient number of calibration data
points in each bin. To achieve approximate calibration, use empiri-
cal frequencies of class labels in each bin:

pπPy,m “
1

Nm

n
ÿ

i“1

1 tYi “ y, f pXiq P Bmu ,

Nm “ |ti P Ical : f pXiq P Bmu| .
Let h : X Ñ ∆K denote the ‘recalibrated’ predictor: hpxq “ pπgpxq
where g : X Ñ M is the bin-mapping function: gpxq “ m ô f pxq P
Bm. For any given α P p0, 1q, we show that with probability ě 1 ´ α,∥∥
pπPm ´ π

P
m

∥∥
1
, where

εm :“
2

a

Nm

g

f

f

e

1

2
ln

˜

M2K

α

¸

.

Consequently, it implies approximate calibration of the resulting pre-
dictor.

Label-shifted conformal

Let wpyq “ qpyq{ppyq (importance weights). Then:

F pwq
px, u; pπq “

 

y : ρypx; pπq ` u ¨ pπypxq ď τ
‹
wpyq

(

,

τ ‹wpyq “ Q1´α

¨

˝

n
ÿ

i“1

p̃wi pyqδri ` p̃
w
n`1pyqδ1

˛

‚,

p̃wi pyq “
wpYiq

řn
j“1wpYjq ` wpyq

,

p̃wn`1pyq “
wpyq

řn
j“1wpYjq ` wpyq

,

are provably valid (the proof relies on the concept of
weighted exchangeability ).

Exchangeability arguments yield a guarantee for known
importance weights, in practice only an estimator is avail-
able. If a consistent estimator pwk is used, then under mild
assumptions:

lim
kÑ8

PpYn`1 P F p pwkq pXn`1, Un`1; pπq | tpXi, YiquiPItrq ě 1 ´ α,

where k “ |Dest| is the size of sets used for constructing
pwk.

• Simulated data Class proportions: p “ p0.1, 0.6, 0.3q

and q “ p0.3, 0.2, 0.5q. Covariates: X | Y “ y „ N pµy,Σq

where µ1 “ p´2; 0qJ, µ2 “ p2; 0qJ, µ3 “
`

0; 2
?

3
˘J,

Σ “ diagp4, 4q.

• Real data Wine quality dataset with p “

p0.1, 0.4, 0.5q, q “ p0.4, 0.5, 0.1q.
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Fig. 2: Coverage on the simulated dataset.
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Fig. 3: Coverage on the wine quality dataset.

Label-conditional conformal (LCC)

Choose a set of significance levels for each class
 

αy
(

yPY (e.g., αy “ α). Split the calibration set Ical into
|Y| “ K groups: Iycal :“ ti P Ical : Yi “ yu. Consider:

F c
px, u; pπq “

 

y : ρypx; pπq ` u ¨ pπypxq ď τ
‹
c pyq

(

,

τ ‹c pyq “ Q1´αy

´

triuiPIycal Y t1u
¯

.

Then for any y P Y :

P pYn`1 R F c
pXn`1, Un`1; pπq | Yn`1 “ yq ď αy.

• LCC yields a stronger guarantee which makes it auto-
matically robust to changes in class proportions. The
price to pay is given by larger prediction sets.

• LCC does not require importance weights estimation
and has exact finite-sample guaranee.

• LCC requires splitting available calibration data into
K parts that could result in large losses of statistical
efficiency when the number of classes K is large.

Label shift hurts calibration

• Data are sampled from a mixture of two Gaussians:
pp0q “ pp1q “ 1{2 and qp0q “ 0.2, qp1q “ 0.8.

• The Bayes-optimal rule πP1 pxq, which is calibrated, is
plotted using the background coloring.

• The area S “

!

x P R2 : πP1 pxq P r0.4; 0.6s
)

has bound-
ary given by the black dashed lines.
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Label-shifted calibration

Bayes rule suggests an appropriate correction for achieving
approximate calibration on the target:

pπp pwqy,m “
pwpyq ¨ pπPy,m

řK
k“1 pwpkq ¨ pπPk,m

, y P Y , m P t1, . . . ,Mu .

Performance depends on the condition number :

κ :“ sup
k
wpkq{ inf

k:wpkq‰0
wpkq,

with κ “ 1 corresponding to label shift not being present.

Theorem 1. For any bin m PM, it holds that:∥∥∥pπp pwqm ´ πQm

∥∥∥
1
ď 2κ ¨

∥∥
pπPm ´ π

P
m

∥∥
1

loooooooooomoooooooooon

paq

`
2 ‖ pw ´ w‖

8

infl:wplq‰0wplq
loooooooomoooooooon

pbq

.

(a) is controlled by the calibration error on the source and
(b) is controlled by the importance weights estimation error.

Label-shifted calibration yields an approximately calibrated
predictor on the target while uncorrected fails.
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Fig. 5: Example of a reliability curve on the simulated dataset.
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Fig. 6: Example of a reliability curve on the wine quality dataset.


